Search results for "Discriminative clustering"

showing 1 items of 1 documents

Making nonlinear manifold learning models interpretable: The manifold grand tour

2015

Smooth nonlinear topographic maps of the data distribution to guide a Grand Tour visualisation.Prioritisation of data linear views that are most consistent with data structure in the maps.Useful visualisations that cannot be obtained by other more classical approaches. Dimensionality reduction is required to produce visualisations of high dimensional data. In this framework, one of the most straightforward approaches to visualising high dimensional data is based on reducing complexity and applying linear projections while tumbling the projection axes in a defined sequence which generates a Grand Tour of the data. We propose using smooth nonlinear topographic maps of the data distribution to…

Clustering high-dimensional dataQA75Nonlinear dimensionality reductionDiscriminative clusteringComputer scienceVisualització de la informaciócomputer.software_genreData visualizationProjection (mathematics)Information visualizationArtificial IntelligenceQA:Informàtica::Infografia [Àrees temàtiques de la UPC]business.industryData visualizationDimensionality reductionGrand tourGeneral EngineeringNonlinear dimensionality reductionTopographic mapData structureComputer Science ApplicationsVisualizationManifold learningData miningbusinesscomputerGenerative topographic mappingLinear projections
researchProduct